Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning

نویسندگان

  • Emilio Parisotto
  • Jimmy Ba
  • Ruslan Salakhutdinov
چکیده

The ability to act in multiple environments and transfer previous knowledge to new situations can be considered a critical aspect of any intelligent agent. Towards this goal, we define a novel method of multitask and transfer learning that enables an autonomous agent to learn how to behave in multiple tasks simultaneously, and then generalize its knowledge to new domains. This method, termed “Actor-Mimic”, exploits the use of deep reinforcement learning and model compression techniques to train a single policy network that learns how to act in a set of distinct tasks by using the guidance of several expert teachers. We then show that the representations learnt by the deep policy network are capable of generalizing to new tasks with no prior expert guidance, speeding up learning in novel environments. Although our method can in general be applied to a wide range of problems, we use Atari games as a testing environment to demonstrate these methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diff-DAC: Distributed Actor-Critic for Multitask Deep Reinforcement Learning

We propose a multiagent distributed actor-critic algorithm for multitask reinforcement learning (MRL), named Diff-DAC. The agents are connected, forming a (possibly sparse) network. Each agent is assigned a task and has access to data from this local task only. During the learning process, the agents are able to communicate some parameters to their neighbors. Since the agents incorporate their ...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Distral: Robust multitask reinforcement learning

Most deep reinforcement learning algorithms are data inefficient in complex and rich environments, limiting their applicability to many scenarios. One direction for improving data efficiency is multitask learning with shared neural network parameters, where efficiency may be improved through transfer across related tasks. In practice, however, this is not usually observed, because gradients fro...

متن کامل

Modular Multitask Reinforcement Learning with Policy Sketches

We describe a framework for multitask deep reinforcement learning guided by policy sketches. Sketches annotate each task with a sequence of named subtasks, providing high-level structural relationships among tasks, but not providing the detailed guidance required by previous work on learning policy abstractions for RL (e.g. intermediate rewards, subtask completion signals, or intrinsic motivati...

متن کامل

Collaborative Deep Reinforcement Learning

Besides independent learning, human learning process is highly improved by summarizing what has been learned, communicating it with peers, and subsequently fusing knowledge from di‚erent sources to assist the current learning goal. Œis collaborative learning procedure ensures that the knowledge is shared, continuously re€ned, and concluded from di‚erent perspectives to construct a more profound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.06342  شماره 

صفحات  -

تاریخ انتشار 2015